Hydrogen-Rich Saline Promotes the Recovery of Renal Function after Ischemia/Reperfusion Injury in Rats via Anti-apoptosis and Anti-inflammation
نویسندگان
چکیده
PURPOSE Hydrogen is a proven novel antioxidant that selectively reduces hydroxyl radicals. In this study, we investigated the effects of hydrogen-rich saline solution on the prevention of renal injury induced by ischemia/reperfusion (I/R) and on renal function recovery. METHODS A rat model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle, followed by 108 h reperfusion. The right kidney was surgically removed. Then, 0.9% NaCl solution (1 ml/kg) or hydrogen-rich saline solution (HRSS; 1 ml/kg) was injected into the abdominal cavity at 4 h intervals. We assessed the influence of HRSS or control saline solution on the recovery of renal function after I/R injury. Kidney tissues were taken at different time points (24, 36, 48, 72, and 108 h after reperfusion) and frozen (-80°C). Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive staining. Additionally, the apoptotic factors (Bcl-2, Bax, caspase-3, caspase-9, and caspase-8) and the pro-inflammatory cytokines (IL-6 and TNF-α) were measured in the kidney tissues. Finally, serum blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. RESULTS Histological analyses revealed a marked reduction of interstitial congestion, edema and hemorrhage in renal tissue after HRSS treatment compared to saline treatment. After I/R injury, BUN, Cr, Bcl-2, caspase-3, caspase-9, caspase-8, IL-6, and TNF-α were all significantly increased, while Bax expression was decreased. HRSS remarkably reversed these changes. Moreover, BUN and Cr decreased more rapidly in the rats treated with HRSS compared to the rats treated with control saline solution. CONCLUSIONS HRSS showed a protective effect in the prevention of renal injury and could promote renal function recovery after I/R injury in rats. HRSS might partially exert its role through an anti-apoptotic and anti-inflammatory action in kidney cells.
منابع مشابه
Hydrogen-rich saline ameliorates hippocampal neuron apoptosis through up-regulating the expression of cystathionine β-synthase (CBS) after cerebral ischemia- reperfusion in rats
Objective(s): This study aimed to evaluate the potential role of hydrogen in rats after cerebral ischemic/reperfusion (I/R) injury. Materials and Methods: The experimental samples were composed of sham group, model group of rats that received middle cerebral artery occlusion (MCAO) for 2 hr followed by reperfusion for 24 hr, and the hydr...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملPaeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats
Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral a...
متن کاملThe role of hormones in renal disease and ischemia-reperfusion injury
The patients with renal diseases, especially end-stage renal disease (ESRD), are at high risk of developing cardiovascular disturbances. Some hormones such as brain natriuretic peptide appear to be important serum biomarkers in predicting cardiac death in ESRD patients. Renal diseases cause inflammation, anemia, uremic toxins, fluid overload, and electrolyte disturbance. Kidney transplantation ...
متن کاملProtective Effects of Nucleobinding-2 After Cerebral Ischemia Via Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein Expression
Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in pharmacology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016